
Secure Mission-Centric Operations in
Cloud Computing

Massimiliano Albanese∗, Sushil Jajodia∗, Ravi Jhawar†,
Vincenzo Piuri†

∗George Mason University, USA
†Università degli Studi di Milano, Italy

ARO Workshop on Cloud Security
George Mason University, USA

March 11-12, 2013

1/39

Outline

• Motivation

• System overview

◦ Mission and Cloud infrastructure

◦ Mission deployment framework

• Secure mission deployment

◦ Static mission deployment

◦ Dynamic mission deployment

◦ Incremental vulnerability analysis

• Mission protection

• Dependability in the mission interpreter

2/39

Motivation (1)

• Cloud computing is becoming increasingly popular

+ Flexibility in obtaining and releasing computing resources

+ Lower entry and usage costs

+ Effective for applications with high scalability requirements

• Growing interest among users to leverage Cloud-based services
to execute critical missions

• Exacerbate the need to ensure high security and availability of the
system and the missions

3/39

Motivation (2)

• Cloud computing infrastructure is highly complex

− Vulnerable to various cyber-attacks

− Subject to a large number of failures

− Outside the control scope of the user’s organization

• Existing solutions individually focus on the security of the
infrastructure and the mission

− Do not take into account the interdependencies between them

• Techniques to securely operate missions in vulnerable Cloud
environments are necessary

4/39

Secure Mission Deployment and Protection

• Deploy mission tasks such that their exposure to vulnerabilities in
the infrastructure is minimum

◦ Static and dynamic versions of the problem

• Protect the hosts and network links used by the mission

◦ Static protection hardens all the resources for entire duration
of mission execution

◦ Dynamic protection hardens resources corresponding to
computation still to be executed

• Response to incidents

5/39

System Overview – Mission

• A mission is a composition of a set of tasks M={τ1,. . . ,τm}

• Replicate critical tasks to improve the fault tolerance and
resilience of the mission

• A replicated task set for τk is the set Rk={τ l
k}={τ1

k , . . . ,τ
|rk|
k }

• Mission is then a composition of all the tasks in the replicated task
sets T = {ti}=

⋃
τk∈M Rk

t1 t2

t6

t3 t4

t5

R1={τ11 , τ21 }
R2={τ12 , τ22 , τ32 }

R3={τ13 }
6/39

System Overview – Cloud Infrastructure

Data center 1

Data center 2

Internet

h1

h2 h3 h4 h5

h6Subnet 1

h7

h8

h9

h10

h11

Subnet 2

h12 h13 h14 h15

Subnet 3

Router A

Router B

7/39

System Overview – Cloud Infrastructure

t1 t2

Data center 1

Data center 2

Internet

h1

h2 h3 h4 h5

h6Subnet 1

h7

h8

h9

h10

h11

Subnet 2

h12 h13 h14 h15

Subnet 3

Router A

Router B

• Hosts may be vulnerable to various cyber-attacks
(e.g., Subnet 1: compromised, Subnet 2: vulnerable, Subnet 3: highly secure)

7/39

System Overview – Cloud Infrastructure

t1 t2

Data center 1

Data center 2

Internet

h1

h2 h3 h4 h5

h6Subnet 1

h7

h8

h9

h10

h11

Subnet 2

h12 h13 h14 h15

Subnet 3

Router A

Router B

• Tasks may have vulnerability tolerance capability
(e.g., Task 1 can handle buffer overflow attacks using memory management
mechanisms)

7/39

Mission Deployment Framework Overview

τ1 τ2 τ3 Abstract tasks

High level task models

t1 t2 Task instancest3 t4 t5

h1

h2

h3

h4

t1

t2

t3

t4

t5

Allocation

8/39

Mission Deployment

9/39

Static Mission Deployment

• Each host h ∈H is associated with a vulnerability value Vh

• tol(t) provides an estimate of the maximum level of vulnerability
the task can be exposed to

• Task allocation problem with two sub-problems

◦ Map each task to an appropriate VM image in the repository

◦ Allocate VMs on suitable physical hosts in the Cloud

h1

h2

h3

h4

I1

I2

I3

I4

I5

t1

t2

t3

t4

t5

T VM Image Ha:T→H

10/39

Selecting VM Images

• Challenge: Develop techniques to assess security of VM images
at run-time and an automated security-driven search scheme to
deploy mission tasks

• VM images encapsulate the entire software stack and determine
the initial state of running VM instances

• Most Cloud IaaS require users to manually select VM images; in
public Cloud services, VM images have critical vulnerabilities

• Objective: Select VM images that satisfy both functional
requirements and security policy of mission tasks

11/39

Allocating VMs on Cloud Infrastructure (1)

• Challenge: Develop approximation algorithms to find suboptimal
allocation solution in a time-efficient manner

• Objective is to minimize exposure of mission tasks to the
vulnerabilities in the Cloud infrastructure

• Satisfy additional dependability constraints
(e.g., host’s capacity and task’s vulnerability tolerance constraint)

12/39

Allocating VMs on Cloud Infrastructure (2)

Root

(t1, h1) (t1, h4)

(t2, h1) (t2, h2) (t2, h3) (t2, h4) (t2, h4)(t2, h3)(t2, h2)(t2, h1)

h1 h2 h3 h4 h1 h2 h3 h4 h1 h2 h3 h4 h1 h2 h3 h4 h4h3h2h1h4h3h2h1h4h3h2h1h4h3h2h1

Root

Task t1

Task t2

Task t3

• Possible solution: Use A∗-based state-space search approach

• State is a possible choice for allocating a task on a host (ti,hj)

• Root state is the initial state where no task is allocated

• Operation generates child states for a given state s

• Goal state is a state in which all the tasks have been allocated (leaf)

• Solution path is the path from root state to any goal state

13/39

Allocating VMs on Cloud Infrastructure (3)

• Objective is to find the solution path with minimum vulnerability
value

• Cost function is the vulnerability measure of complete allocation
fvul(s) = gvul(s)+hvul(s)

• gvul(s) is the total minimum vulnerability due to task allocation
from the root state to the current state s

• hvul(s) is the lower-bound vulnerability estimate of the allocation
from the current state to any goal state

◦ hvul(s) is computed using an admissible heuristic

◦ Improves search performance while not compromising optimality

14/39

Allocating VMs on Cloud Infrastructure (4)

• Traversal scheme expands the states and generates the solution
path starting from the root state

• The state with minimum fvul(s) value is considered and its
successors are generated (unless s corresponds to the goal state)

• For each successor s∗ of s

◦ Vulnerability cost gvul is calculated

◦ If s∗ is already visited, and if its real cost is less than that of the
current successor, it is dropped, and hvul(s∗) value is estimated

◦ The fvul(s∗)=gvul(s∗)+hvul(s∗) value is determined and stored

• The parent state s is marked as visited

15/39

Example - Allocating VMs on Cloud Infrastructure (5)

Network Application

Host
Residual CPU capacity,

Task
CPU Requirement,

Vulnerability level Vulnerability tolerance

h1 0.5, 0.3 t1 0.4, 0.2
h2 0.7, 0.1 t2 0.4, 0.2
h3 0.3, 0.2 t3 0.3, 0.4
h4 0.5, 0.2

∆Vti,hj h1 h2 h3 h4

t1 0.3 0.1 0.1 0.2
t2 0.1 0.2 0.1 0
t3 0 0.2 0.1 0.1

root

∅

t1, h2

0.7

t2, h4

0.7

t3, h1

0.7

t3, h2

0.7

t3, h3

0.7

t1, h4

1.0

0

1 2

3

4

5

6

State-space tree nodes expansion sequence
16/39

Allocating VMs on Cloud Infrastructure (6)

Number of search steps with and without the estimation heuristic

50 100 150 200

0

100

200

Number of hosts

S
e
a
rc
h
st
e
p
s

5 10 tasks (with heuristic) 5 10 tasks (uniform cost)

17/39

Allocating VMs on Cloud Infrastructure (7)

Quality of the solution wrt the (i) mission and (ii) globally across the
Cloud infrastructure

20 40 60 80 100

1

1.05

1.1

Number of hosts

A
p
p
ro
x
im

at
io
n
ra
ti
o

5 10 15 tasks

20 40 60 80 100

1.2

1.4

1.6

Number of hosts

A
p
p
ro
x
im

a
ti
o
n
ra
ti
o

18/39

Allocating VMs on Cloud Infrastructure (8)

Scalability of the proposed approach

20 40 60 80 100

0

5

10

15

Number of hosts

T
im

e
(s
)

5 10 15 20 25 tasks

10 20 30 40 50

0

10

20

Number of tasks

T
im

e
(s
)

10 20 30 40 50 hosts

19/39

Dynamic Mission Deployment (1)

• Each task is associated with temporal constraints
(e.g., a task may only run after another task)

• Critical missions must complete within a certain amount of time

• Possible solution: Complex task scheduling solution that takes
into account the capability of the VM while computing the solution

20/39

Dynamic Mission Deployment (2)

• Challenge: Schedule mission tasks on the hosts

1 To minimize their exposure to the vulnerabilities in the network

2 To ensure their deadlines are met

task Mission execution timeline

t1

t2

t3

t4

0 1 2 3 4 5 6 7 8 9 10 time

s0 s1 s2 s3
task1

(3s)

task2 (2s)

task3 (3s)

task4

(4s)
∧

• Critical tasks (e.g., task t3) must be placed on highly reliable host

• Adopt scheduling schemes such as greedy heuristics, genetic
algorithms, tabu search, A∗ to solve the scheduling problem

21/39

Incremental Vulnerability Analysis (1)

• Challenge: Develop a scalable scheme to estimate the increase
∆Vti,hj in vulnerability level of host hj due to deployment of task ti

• An allocation introduces new services (tasks, VMs) on a host and
increases its vulnerability by ∆V

• Perform “what-if” analysis during mission deployment

22/39

Incremental Vulnerability Analysis (2)

• Possible solution: Instead of recomputing the vulnerability
“from-scratch”, apply an “incremental” algorithm on attack graph

1 Event-based approach

2 Identify the changed parts of the graph and calculate the changed
vulnerability

3 Combine the results with already computed results

c2

e2

c3

e3

c1

e1

c4

Conditions

Exploits

23/39

Incremental Vulnerability Analysis (2)

• Possible solution: Instead of recomputing the vulnerability
“from-scratch”, apply an “incremental” algorithm on attack graph

1 Event-based approach

2 Identify the changed parts of the graph and calculate the changed
vulnerability

3 Combine the results with already computed results

c2

e2

c3

e3

c1

e1

c5

e5

c4

Conditions

Exploits

23/39

Mission Protection

24/39

Static Network Hardening

• Challenge: Given a mission is deployed in the Cloud, protect
the resources used by the mission tasks

• In the static version, all the hosts and network links are protected
for the entire duration of mission execution

t1 t2

Internet

h1

h2 h3 h4 h5

h6Subnet 1

h7

h8

h9

h10

h11

Subnet 2

h12 h13 h14 h15

Subnet 3

Router A

Router B

• Possible solution: Build on top of previous work for network
hardening

25/39

Dynamic Mission Protection

• Challenge: At any point in time, find a cost-optimal time-varying
strategy to harden the resources not yet used by the mission

• Dynamic protection minimizes the disruption that hardening
strategy causes to legitimate users

• Possible solution: Efficient technique that analyzes huge streams
of security threats at real-time

• For example, use of attack graphs to track where the attacker is
going (the penetration path)

26/39

Dependability in the Mission Interpreter

27/39

Dependability Support for Mission Interpreter

• Realize the notion of Dependability as a Service

• Dependability schemes based on the virtualization technology
(e.g., checkpointing virtual machine instances)

+ introduce dependability in a transparent manner

+ offers high level of generality

+ Possible to change dependability properties based on business
needs

• Construct dependability mechanisms at runtime
◦ Mission centric Service Level Agreement (SLA)

28/39

Dependability as a Service

• Build and deliver the service by orchestrating a set of
micro-protocols

◦ Realize dependability techniques as independent, stand-alone,
configurable modules (web services)

◦ Operate at the level of virtual machine instances

• VM instance replication technique

FTM

h1 h2 h3h3 h4

29/39

Dependability as a Service

• Build and deliver the service by orchestrating a set of
micro-protocols

◦ Realize dependability techniques as independent, stand-alone,
configurable modules (web services)

◦ Operate at the level of virtual machine instances

• VM instance replication technique

FTM

h1 h2 h3 h4h4h1 h3

29/39

Dependability as a Service

• Build and deliver the service by orchestrating a set of
micro-protocols

◦ Realize dependability techniques as independent, stand-alone,
configurable modules (web services)

◦ Operate at the level of virtual machine instances

• Failure detection using hearbeat test

29/39

Example of a comprehensive dependability solution

• A fault tolerance policy:
ft_sol[
invoke:ft_unit(VM-instances replication)
invoke:ft_unit(failure detection)
do{

execute(failure detection ft_unit)
}while(no failures)
if(failure detected)

invoke:ft_unit(masking mechanism)
invoke:ft_unit(recovery mechanism)

]

30/39

Example of a comprehensive dependability solution

• A fault tolerance policy:
ft_sol[
invoke:ft_unit(VM-instances replication)
invoke:ft_unit(failure detection)
do{

execute(failure detection ft_unit)
}while(no failures)
if(failure detected)

invoke:ft_unit(masking mechanism)
invoke:ft_unit(recovery mechanism)

]

h1 h2 h3 h4

Replica Group

30/39

Example of a comprehensive dependability solution

• A fault tolerance policy:
ft_sol[
invoke:ft_unit(VM-instances replication)
invoke:ft_unit(failure detection)
do{

execute(failure detection ft_unit)
}while(no failures)
if(failure detected)

invoke:ft_unit(masking mechanism)
invoke:ft_unit(recovery mechanism)

]

h1 h2 h3 h4

Replica Group

30/39

Example of a comprehensive dependability solution

• A fault tolerance policy:
ft_sol[
invoke:ft_unit(VM-instances replication)
invoke:ft_unit(failure detection)
do{

execute(failure detection ft_unit)
}while(no failures)
if(failure detected)

invoke:ft_unit(masking mechanism)
invoke:ft_unit(recovery mechanism)

]

h1 h2 h3 h4

Replica Group

30/39

Example of a comprehensive dependability solution

• A fault tolerance policy:
ft_sol[
invoke:ft_unit(VM-instances replication)
invoke:ft_unit(failure detection)
do{

execute(failure detection ft_unit)
}while(no failures)
if(failure detected)

invoke:ft_unit(masking mechanism)
invoke:ft_unit(recovery mechanism)

]

h1 h2 h3 h4

Replica Group

30/39

Configuration of a Dependability Solution (1)

• Based on the affect of failures on mission’s tasks

• Using Fault trees and Markov chains

ToR–Top of Rack Switch AggS–Aggregate Switch
AccR–Access Router LB–Load Balancer

31/39

Configuration of a Dependability Solution (2)

• Analyze the properties of typical dependability mechanisms

• For example, semi-active replication

• Primary, Backup (λ – failure rate, µ – recovery rate, k – constant)

1,1 1,0 0,0

2λ

kµ

λ

kµ

(1− k)µ (1− k)µ

32/39

Identify possible deployment levels

• Based on data published by Kim et al. in PRDC’09, Smith et al. in
IBM Systems Journal’08, Undheim et al. in Grid’11

• Availability values for each replication mechanism at different
deployment levels

Same Cluster Same Data center, Diff. Data centers
diff. clusters

Semi-Active 0.9871 0.9913 0.9985
Semi-Passive 0.9826 0.9840 0.9912

Passive 0.9542 0.9723 0.9766

33/39

Replica Placement Constraints

• Location and performance requirements of replicas can be
specified using constraints

◦ Global constraints – Resource Capacity

◦ Infrastructure oriented constraints – Forbid, Count

◦ Application oriented constraints – Restrict, Distribute, Latency

34/39

Example - Distribute Constraint

• To avoid single points of failure among replicated tasks

• Two tasks are never located on the same physical host

v1

v2v3

h1

h5h2

h4h3

h1

h5h2

h4h3

h10

h7

h6

h9h8

35/39

Example - Distribute Constraint

• To avoid single points of failure among replicated tasks

• Two tasks are never located on the same physical host

v1

v2v3

h1

h5h2

h4h3

h1

h5h2

h4h3

h10

h7

h6

h9h8

35/39

Example - Distribute Constraint

• To avoid single points of failure among replicated tasks

• Two tasks are never located on the same physical host

v1

v2v3

h1

h5h2

h4h3

h1

h5h2

h4h3

h10

h7

h6

h9h8

35/39

Example - Distribute Constraint

• To avoid single points of failure among replicated tasks

• Two tasks are never located on the same physical host

v1

v2v3

h1

h5h2

h4h3

h1

h5h2

h4h3

h10

h7

h6

h9h8

35/39

Conclusions

• Mission-centric techniques to improve the security and fault
tolerance in Cloud computing

• Secure mission deployment techniques (allocation and
scheduling)

• Static and dynamic mission protection by network hardening

• Provide complementary dependability support to the mission
interpreter as a service

36/39

Acknowledgments

This work is supported by the Army Research Office under award
number W911NF-12-1-0448, and by the Office of Naval Research

under award number N00014-12-1-0461

37/39

Publications

Chapters in Books

• R. Jhawar, V. Piuri, "Fault Tolerance and Resilience in Cloud Computing
Environments" in Computer and Information Security Handbook, 2nd Edition, J.
Vacca (ed.), Morgan Kaufmann, 2013 (to appear)

International Journals Articles

• R. Jhawar, V. Piuri, M. Santambrogio, "Fault Tolerance Management in Cloud
Computing: A System-Level Perspective," Systems Journal, IEEE, vol.PP, no.99

• C. A. Ardagna, R. Jhawar, V. Piuri, "Dependability Certification of Services: A
Model-Based Approach", (under submission)

International Conferences and Workshops

• M. Albanese, S. Jajodia, R. Jhawar, V. Piuri, "Secure Mission Deployment in
Vulnerable Networks", (under submission)

38/39

Publications

• C.A. Ardagna, E. Damiani, R. Jhawar, and V. Piuri, "A Model-Based Approach to
Reliability Certification of Services," in Proc. of the 6th IEEE Int’l Conference on
Digital Ecosystem Technologies - Complex Environment Engineering, Campione
d’Italia, Italy, June, 2012

• R. Jhawar, and V. Piuri, "Fault Tolerance Management in IaaS Clouds," in Proc.
of the 1st IEEE-AESS Conference in Europe about Space and Satellite
Telecommunications, Rome, Italy, October 2-5, 2012

• R. Jhawar, V. Piuri, and P. Samarati, "Supporting Security Requirements for
Resource Management in Cloud Computing," in Proc. of the 15th IEEE Int’l
Conference on Computational Science and Engineering, Paphos, Cyprus,
December 5-7, 2012

• R. Jhawar, V. Piuri, and M. Santambrogio, "A Comprehensive Conceptual
System-Level Approach to Fault Tolerance in Cloud Computing," in 2012 IEEE
Int’l Systems Conference, Vancouver, BC, Canada, March 19-22, 2012

39/39

