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Motivation (1)

• Cloud computing is becoming increasingly popular

+ Flexibility in obtaining and releasing computing resources

+ Lower entry and usage costs

+ Effective for applications with high scalability requirements

• Growing interest among users to leverage Cloud-based services
to execute critical missions

• Exacerbate the need to ensure high security and availability of the
system and the missions
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Motivation (2)

• Cloud computing infrastructure is highly complex

− Vulnerable to various cyber-attacks

− Subject to a large number of failures

− Outside the control scope of the user’s organization

• Existing solutions individually focus on the security of the
infrastructure and the mission

− Do not take into account the interdependencies between them

• Techniques to securely operate missions in vulnerable Cloud
environments are necessary
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Secure Mission Deployment and Protection

• Deploy mission tasks such that their exposure to vulnerabilities in
the infrastructure is minimum

◦ Static and dynamic versions of the problem

• Protect the hosts and network links used by the mission

◦ Static protection hardens all the resources for entire duration
of mission execution

◦ Dynamic protection hardens resources corresponding to
computation still to be executed

• Response to incidents
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System Overview – Mission

• A mission is a composition of a set of tasks M={τ1,. . . ,τm}

• Replicate critical tasks to improve the fault tolerance and
resilience of the mission

• A replicated task set for τk is the set Rk={τ l
k}={τ1

k , . . . ,τ
|rk|
k }

• Mission is then a composition of all the tasks in the replicated task
sets T = {ti}=

⋃
τk∈M Rk

t1 t2

t6

t3 t4

t5

R1={τ11 , τ21 }
R2={τ12 , τ22 , τ32 }

R3={τ13 }
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System Overview – Cloud Infrastructure
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• Hosts may be vulnerable to various cyber-attacks
(e.g., Subnet 1: compromised, Subnet 2: vulnerable, Subnet 3: highly secure)
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System Overview – Cloud Infrastructure
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• Tasks may have vulnerability tolerance capability
(e.g., Task 1 can handle buffer overflow attacks using memory management
mechanisms)
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Mission Deployment Framework Overview
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Mission Deployment
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Static Mission Deployment

• Each host h ∈H is associated with a vulnerability value Vh

• tol(t) provides an estimate of the maximum level of vulnerability
the task can be exposed to

• Task allocation problem with two sub-problems

◦ Map each task to an appropriate VM image in the repository

◦ Allocate VMs on suitable physical hosts in the Cloud
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T VM Image Ha:T→H
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Selecting VM Images

• Challenge: Develop techniques to assess security of VM images
at run-time and an automated security-driven search scheme to
deploy mission tasks

• VM images encapsulate the entire software stack and determine
the initial state of running VM instances

• Most Cloud IaaS require users to manually select VM images; in
public Cloud services, VM images have critical vulnerabilities

• Objective: Select VM images that satisfy both functional
requirements and security policy of mission tasks
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Allocating VMs on Cloud Infrastructure (1)

• Challenge: Develop approximation algorithms to find suboptimal
allocation solution in a time-efficient manner

• Objective is to minimize exposure of mission tasks to the
vulnerabilities in the Cloud infrastructure

• Satisfy additional dependability constraints
(e.g., host’s capacity and task’s vulnerability tolerance constraint)
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Allocating VMs on Cloud Infrastructure (2)
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• Possible solution: Use A∗-based state-space search approach

• State is a possible choice for allocating a task on a host (ti,hj)

• Root state is the initial state where no task is allocated

• Operation generates child states for a given state s

• Goal state is a state in which all the tasks have been allocated (leaf)

• Solution path is the path from root state to any goal state
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Allocating VMs on Cloud Infrastructure (3)

• Objective is to find the solution path with minimum vulnerability
value

• Cost function is the vulnerability measure of complete allocation
fvul(s) = gvul(s)+hvul(s)

• gvul(s) is the total minimum vulnerability due to task allocation
from the root state to the current state s

• hvul(s) is the lower-bound vulnerability estimate of the allocation
from the current state to any goal state

◦ hvul(s) is computed using an admissible heuristic

◦ Improves search performance while not compromising optimality
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Allocating VMs on Cloud Infrastructure (4)

• Traversal scheme expands the states and generates the solution
path starting from the root state

• The state with minimum fvul(s) value is considered and its
successors are generated (unless s corresponds to the goal state)

• For each successor s∗ of s

◦ Vulnerability cost gvul is calculated

◦ If s∗ is already visited, and if its real cost is less than that of the
current successor, it is dropped, and hvul(s∗) value is estimated

◦ The fvul(s∗)=gvul(s∗)+hvul(s∗) value is determined and stored

• The parent state s is marked as visited
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Example - Allocating VMs on Cloud Infrastructure (5)

Network Application

Host
Residual CPU capacity,

Task
CPU Requirement,

Vulnerability level Vulnerability tolerance
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Allocating VMs on Cloud Infrastructure (6)

Number of search steps with and without the estimation heuristic
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Allocating VMs on Cloud Infrastructure (7)
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Allocating VMs on Cloud Infrastructure (8)

Scalability of the proposed approach
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Dynamic Mission Deployment (1)

• Each task is associated with temporal constraints
(e.g., a task may only run after another task)

• Critical missions must complete within a certain amount of time

• Possible solution: Complex task scheduling solution that takes
into account the capability of the VM while computing the solution
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Dynamic Mission Deployment (2)

• Challenge: Schedule mission tasks on the hosts

1 To minimize their exposure to the vulnerabilities in the network

2 To ensure their deadlines are met

task Mission execution timeline

t1

t2

t3

t4

0 1 2 3 4 5 6 7 8 9 10 time

s0 s1 s2 s3
task1

(3s)

task2 (2s)

task3 (3s)

task4

(4s)
∧

• Critical tasks (e.g., task t3) must be placed on highly reliable host

• Adopt scheduling schemes such as greedy heuristics, genetic
algorithms, tabu search, A∗ to solve the scheduling problem
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Incremental Vulnerability Analysis (1)

• Challenge: Develop a scalable scheme to estimate the increase
∆Vti,hj in vulnerability level of host hj due to deployment of task ti

• An allocation introduces new services (tasks, VMs) on a host and
increases its vulnerability by ∆V

• Perform “what-if” analysis during mission deployment
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Incremental Vulnerability Analysis (2)

• Possible solution: Instead of recomputing the vulnerability
“from-scratch”, apply an “incremental” algorithm on attack graph

1 Event-based approach

2 Identify the changed parts of the graph and calculate the changed
vulnerability

3 Combine the results with already computed results
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Mission Protection
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Static Network Hardening

• Challenge: Given a mission is deployed in the Cloud, protect
the resources used by the mission tasks

• In the static version, all the hosts and network links are protected
for the entire duration of mission execution
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• Possible solution: Build on top of previous work for network
hardening
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Dynamic Mission Protection

• Challenge: At any point in time, find a cost-optimal time-varying
strategy to harden the resources not yet used by the mission

• Dynamic protection minimizes the disruption that hardening
strategy causes to legitimate users

• Possible solution: Efficient technique that analyzes huge streams
of security threats at real-time

• For example, use of attack graphs to track where the attacker is
going (the penetration path)
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Dependability in the Mission Interpreter
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Dependability Support for Mission Interpreter

• Realize the notion of Dependability as a Service

• Dependability schemes based on the virtualization technology
(e.g., checkpointing virtual machine instances)

+ introduce dependability in a transparent manner

+ offers high level of generality

+ Possible to change dependability properties based on business
needs

• Construct dependability mechanisms at runtime
◦ Mission centric Service Level Agreement (SLA)
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Dependability as a Service

• Build and deliver the service by orchestrating a set of
micro-protocols

◦ Realize dependability techniques as independent, stand-alone,
configurable modules (web services)

◦ Operate at the level of virtual machine instances

• VM instance replication technique

FTM

h1 h2 h3h3 h4
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Dependability as a Service

• Build and deliver the service by orchestrating a set of
micro-protocols

◦ Realize dependability techniques as independent, stand-alone,
configurable modules (web services)

◦ Operate at the level of virtual machine instances

• Failure detection using hearbeat test

29/39



Example of a comprehensive dependability solution

• A fault tolerance policy:
ft_sol[
invoke:ft_unit(VM-instances replication)
invoke:ft_unit(failure detection)
do{

execute(failure detection ft_unit)
}while(no failures)
if(failure detected)

invoke:ft_unit(masking mechanism)
invoke:ft_unit(recovery mechanism)

]
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Configuration of a Dependability Solution (1)

• Based on the affect of failures on mission’s tasks

• Using Fault trees and Markov chains

ToR–Top of Rack Switch AggS–Aggregate Switch
AccR–Access Router LB–Load Balancer
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Configuration of a Dependability Solution (2)

• Analyze the properties of typical dependability mechanisms

• For example, semi-active replication

• Primary, Backup (λ – failure rate, µ – recovery rate, k – constant)

1,1 1,0 0,0

2λ

kµ

λ

kµ

(1− k)µ (1− k)µ

32/39



Identify possible deployment levels

• Based on data published by Kim et al. in PRDC’09, Smith et al. in
IBM Systems Journal’08, Undheim et al. in Grid’11

• Availability values for each replication mechanism at different
deployment levels

Same Cluster Same Data center, Diff. Data centers
diff. clusters

Semi-Active 0.9871 0.9913 0.9985
Semi-Passive 0.9826 0.9840 0.9912

Passive 0.9542 0.9723 0.9766
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Replica Placement Constraints

• Location and performance requirements of replicas can be
specified using constraints

◦ Global constraints – Resource Capacity

◦ Infrastructure oriented constraints – Forbid, Count

◦ Application oriented constraints – Restrict, Distribute, Latency
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Example - Distribute Constraint

• To avoid single points of failure among replicated tasks

• Two tasks are never located on the same physical host
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Conclusions

• Mission-centric techniques to improve the security and fault
tolerance in Cloud computing

• Secure mission deployment techniques (allocation and
scheduling)

• Static and dynamic mission protection by network hardening

• Provide complementary dependability support to the mission
interpreter as a service
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